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ROTATIONAL GAS DYNAMIC FLOW BY THE INVERSE METHOD

Abstract

This paper concerns the use of an inverse method to describe

two-dimensional gas dynamic flow fields of either rotational or

irrotational character. The inverse method provides a means of

solving the elliptic flow equation in the subsonic region, as well

as the hyperbolic equation of the supersonic region. This is ac-

complished by specifying Cauchy conditions such as centerline

velocity or pressure as well as their derivatives normal to the

centerline. The governing equations are then solved in the half

plane by integrating in a direction normal to the streamlines.

Each streamline obtained by integrating the governing equations

may represent a solid wall contour in the inviscid sense. In this

paper the governing equations for inviscid steady, axisymmetric

flow are to be solved for several nozzle flow fields. These
f

equations are solved numerically in a transformed system of co-

ordinates representing the stream function and a stretched axial

coordinate to permit maximum stability. The unique feature of the

method of solution is that it permits a unified treatment of the

subsonic (including initial conditions), the transonic and the

supersonic portions of a rotational flow.

Background

Two-dimensional calculations for nozzles and wind tunnel have
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usually treated the flow in three distinct regimes: the subsonic,

the transonic, and the supersonic. While it is true that pertur-

bations in the supersonic flow do not affect the subsonic flow,

unless a mach line intersects the sonic line, changes in the sub-

sonic flow do influence the supersonic flow . Since we have a

powerful tool for the solution of hyperbolic equations in the

Method of Characteristics (MOC), the supersonic flow has received

a great deal of attention. Optimum contours can now be calculated

which account for a variety of aerothermodynamic effects.

The supersonic flow field solutions by M3C calculations are

initiated in the transonic regions from an initial data surface

which is a Cauchy boundary condition (the value and their deriva-

tives are known). At first, MOC calculations employed one-dimen-

sional results for this initial data; now, however, special tran-

sonic analyses have been derived reflecting in some degree the

"234two-dimensional effects at the throat ' * . These solutions are

characterized by a perturbation analysis about M = 1 for small

radial velocities. The nozzle wall at the throat is represented

by a finite series of terms not necessarily matching the desired

contour. In general, the series of solution is expanded in terms

of some function of (R /R ) which causes convergence difficultiesc c

for Rc/Rt < 1.

An improvement to the above methods was introduced by

Kliegel and Levine when, the wall contour is represented by a

series suggested by orthogonal torroidal coordinates. This



approach involves an expansion of the wall contour in terms of

1/(R /R_ + 1). The solution obtained is essentially that of"c t

Hall for large R /R , however, it continues to predict realistic

results for R /R & 1. Recently Kliegel and Levine have concluded

that the series employed does not converge for higher approxima-

tions .

More recently a special form of the Cauchy nozzle flow

problem has been used with great success for calculating the tran-

7 8sonic flow in nozzles * . The basis for this method is to specify

a centerline function, and to assume the dependent variables are

adequately represented by a finite series involving the independent

variables (3 or 4 terms). In this way, a solution for the nozzle

wall over a region about the thjroat is directly obtainable without

numerical integration. By proper choice of the centerline Cauchy

condition a throat contour and inlet angle may be reasonably

matched. It has been possible to calculate the flow field for

throat contours of very small radius of curvature (R /R < .25).c t

Unfortunately, this method is difficult to extend far into the

subsonic region with a resenable match of the desired wall contour.

This is due to the finite number of terms carried in the series

representing the dependent variables, and the fact that in the

Cauchy approach, points far from the centerline require high

order derivatives of the centerline function. Ultimately, of

course, all of the above methods do not allow the low subsonic

•flow field and the method of mass generation (initial conditions)



to influence the transonic and supersonic flow.

The principal reason for the failure of subsonic calculations

is the lack of known boundary conditions for a fixed geometry.

The classical method of solution of elliptic equations requires

boundary conditions of the Newman (derivatives of dependent vari-

ables) or Dirichlet (magnitude of the dependent variables) type

over a closed region. The solution for the interior points is

effected by relaxation allowing the prescribed boundary conditions

to determine the interior values. In gas dynamic flows, often

these boundary conditions are.not known; in fact, these conditions

are often the primary purpose of the analysis. This is especially

true of the transonic region boundary conditions which are useful

for HOC supersonic flow solutions.

It has been argued on the basis of experimental observation

that the subsonic flow does not significantly affect the transonic

flow. While this may be a justifiable conclusion for the purposes

of an Initial data surface for MOC calculations, the mathematical

consequences of this assumption for subsonic flow are not accept-

able. A complete transonic solution provides a Cauchy condition.

If this Cauchy condition is employed over any portion of a closed

boundary defined by the wall, the centerline, the initial plane,

and a reference .line in the transonic region the problem is over-
o

specified . To circumvent this problem the initial plane could be

left open. We know from experimental results that the method of

mass generation at the initial plane does not significantly



influence the transonic region; therefore, it cannot be expected

, that the transonic solution could be projected back to a unique

initial condition unless the transonic solution was extremely

accurate..

The only remaining option is to specify the initial condi-

tions and to use only Newman-Dirichlet conditions at the transonic

reference line. However, unless the two boundary conditions are

exactly correct, the interior flow cannot be expected to relax to

a stable value because .it is necessary to match the mass energy

and momentum exactly.

At the present time there are two methods for eliminating

these mathematical difficulties: the inverse Cauchy Method and

the Asymptomatic Time Method. The latter makes use of Crocco's
• • *

10suggestion by considering the'unsteady flow equations which are

11 12hyperbolic with.respect to time ' . Under these conditions the .

Cauchy problem is proper and the solution proceeds from an assumed

initial condition for the entire flow fields to a steady state

solution, if one exists. This method has recently been shown

feasible for flows initiated from an infinite reservoir where the

initial velocities are zero.' However, for flows originating from

a constant area duct, it is necessary to solve the unsteady flow

field many times to obtain the proper initial velocity in order

to prevent instabilities. The large number of resultant calcula-

tions influence the accuracy due to roundoff errors. However-,

with the advent of faster computers which carry more significant



digits these problems may not be significant.

The inverse Cauchy method can be employed to solve the

governing equations efficiently and accurately for an entire flow

12field without simplifying assumptions . This is accomplished by

integrating in steps of the stream function from an analytic,

smooth Cauchy centerline condition. The solution obtained is

exact; however, the streamlines may not represent the desired

shape for a given physical problem. This disadvantage limits the

use of this method to a design function unless substantial intera-

tion of the centerline function is permitted.

THE INVERSE METHOD

The inverse method allows the solution of nozzle flow problems

in the subsonic, transonic and supersonic regions. The method
7

employes an assumed centerline profile. This profile is of the

Cauchy type in that the values and the derivatives of the profile

are known. For arbitrarily specified centerline data, the solution

of the governing flow equations may not exist, and if it does, it

14may not depend continuously on the data . However, if analytic

data is specified, the Cauchy-Kowalewsky theorem indicates that

a solution exists in the neighborhood of the initial data. Inte-

gration is initiated at the centerline and is continued radially

in the half-plane indefinitely, providing instabilities do not

develop. In addition to the centerline data, end conditions may

be specified, but these may not be of the Cauchy type since these



would over-specify the solution unless they are imposed at ±°°.

However, boundary condition of Dirichlet or Newman type are always

permissible. This permits the postulation of rotational types of

flow in the sense that entropy may vary normal to the streamlines

due to non-uniformities in the combustion or due to tangential

velocities.

Recently, there has been some attempts to obtain a mathe-

matically and physically consistent solution of the flow field

from mass generation surface through the supersonic region. This.

is necessary to accurately predict the heat transfer in nozzles

with rapidly.converging inlets and low radius of curvature throat

sections. The rapid convergent section provides a minimum heat

path and tends to laminarize the boundary layer thus reducing heat•

transfer losses . Another important .feature in the low subsonic

flow field is the flow behavior in the region adjacent to the

transition from the constant area combustion chamber and conver-

gent section. It has been found that often boundary layer separa-

tion occurs in this concave region due to a locally unfavorable

pressure gradient . "

It is for these types of flow details that the inverse method

can be a practical design tool. It is possible to input various

centerline velocities profiles and examine nozzle contours with

their associated velocity and pressure fields. By logical choice

a centerline velocity function can be derived which gives the

salient features of a desired nozzle flow field. In this manner,
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the flow in the concave region can be studied and a nozzle profile

which minimizes the unfavorable pressure gradient in this area can

be determined.

From a design point of view, it is possible to input center-

line velocity profiles and to obtain a mathematically exact solu-

tion to the flow field, such that if a nozzle was constructed with

the contour of a streamline thus generated, the exact solution for

the flow would be known for the envisioned flow. Furthermore,

since the free stream is known, the boundary layer may be calcul-

ated so that the wall may be appropriately displaced.

It should be emphasized that the inverse method is not suited

to the detailed prediction of an existing nozzle contour. Most

nozzles are constructed from simple geometrical shapes such as

circular arcs and conical sections which, at their juncture, are

discontinuous in the higher order derivatives. Since any center-

line velocity must be an analytic function, streamline contours

cannot be expected to be discontinuous.

THE ANALYSIS

In this section the governing gas dynamic equations for

rotational (non-homentropic), steady flow will be presented.

Subsequently, these equations will be transformed into the ij» , C

plane which represents respectively, the streamline function and

a stretched axial coordinate. ( See Figure 1 )
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Continuity Equations

3r

» -pur (2)
OS6

Momentum Equations

1 - - < « £ + > < 4 >

r) = 0 (5)
l»t Of o-e.

Process Equation

q.VS =0 (6)

Energy Equation

q.VH =0 (7)

For the continuity equation a streamline function has been

Introduced such that continuity is satisfied identically.

o (8)3r3z 3r3z
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The momentum equations are those of Euler for axisymmetric

flow and they are reduced from the Navier-Stokes equations by

neglecting the effects of viscosity. The process equation reflects

the conservation of entropy along streamlines but it allows varia-

tions normal to them. The energy equation is equivalent to the

process equation and it assures constant total enthalpy along

streamlines.

Transformation of the Governing Equations

Since the equations are to be solved numerically, and it is

well known that the Cauchy boundary conditions can give rise to

18numerical instabilities if not properly handled , it was

decided to transform the governing equations into a form which

puts any geometry into a rectangular shape and which spaces the

network of interior points more finely in regions of the greatest

gradients of the dependent variables (Figure 1) . The transforma-

tion is formally stated as:

r,z -* *.C (9)

where •

tf) = the stream function of equations 1 and 2.

€ = the stretched axial coordinate.

The transformation is best handled employing the Jacobian,

first noting, however, the functional dependence of- if* and £ on

r and z.
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. * = *(r,z) . (10)

The results of the Jacob! an yield the paritals of the old

independent variables in terms of the new ones.

<12>

- (uM1) (13)

(14)
Vf

where,

The momentum equation is derived below.

3P 3P 3il) 3P 3r 3P— = — ' 4. ̂ __ ̂ s. — __ OUT-
3r 3^ 3r 3? 3r 3iJ) P r

3P 3P ,u3u_.puc_ = ̂ {_

Collecting terms, and solving for 3P/3^yields,
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- 3>Ji wr L 3£ * r

The governing equations which apply in the transformed plane are

given below where T has been introduced as T = vr, which is a

function of the circulation and most remain constant along a

streamline.

|| -1/ptw (19)

f| - u/wC' (20)

p1/Y = constant on i|» - . (22)

r(t|>) = constant on ij/ (23)

Ho<*> - cpT + "2 " f * ̂ (24)

(u

where F((|») , T(i{i), and H (\|j) are determined from the specified

initial conditions. -

The preceding equations are valid for rotational flow with

any distribution of tangentials velocity, entropy, and energy
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which may be specified as the initial conditions. The boundary

conditions for the open boundary are:

£ = 0, z « - » ; w(ijj) = f(ifi), u(iji) = 0

£ - 2, z = + » ; w(i|i) = winf, u(ij)) =0 (26)

# » 0, r - 0 ;• w(£i) = w, u

The centerline velocity w . and the stretched axial coordinate

are defined only when a particular problem is to be solved.
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NOZZLE FLOW

To solve a nozzle flow problem using the inverse technique, it

is required that an analytic centerline velocity function be chosen

which contains the salient features of the nozzle to be designed.

The centerline velocity function must also agree with the end

conditions wherever they are applied. A number of functions have

7 13 18
been devised by other authors ' ' however, for the present

study a function has been developed which has been found to be

descriptive of the entire nozzle.

W ,(z) - M* - U ,/a* » 1 + 4~{tanhtB(z-zJ] + tanh[C(z-zJ ]} (27)cl cl / t t

Some of the features of this function are given below:

W , (-») - W = 1 - A (28)cl o

W ,(4*) = W. _ = 1 + A (29)cl int

Wcl(zt) - 1.0 - H*t . (30)

dW
C)/2 ' (31)

Thus, equation 27 insures that M* = 1 at z = z , and that the

derivative is maximum and independent of z at the throat. Note

that z does not define the plane of minimum area since the flow

properties vary in -the radial direction. This function introduces

three arbitrary constants which are useful in specifying the

contraction ratio, e ; the nozzle inlet angle, 8 ; and the radius

of curvature ratio, R /R . The constant A controls e by

specifying the velocity at the initial plane. It also controls
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the maximum velocity reached in the supersonic portion of the

flow. The constants B and C control the radius of curvature ratio

for a given e by specifying the rate at which velocity changes
c

through the throat. Note that, W* ., is maximum and independent of z

at the throat. From experience it has been found that this

criteria forms the streamlines into circular arcs at the throat;

thereby permitting comparison with existing experimental work.

"The nozzle inlet angle, 8 , is determined by the streamline under

consideration and a complicated function of A, B, and C.

Now that the centerline velocity function has been presented it

is necessary to discuss the choice of an axial stretching function.

Recall that the fundamental postulate of the inverse method' is that

every point in the flow field depends continuously on the center-

line velocity function. In a numerical sense, as tj» is increased

more and more of the centerline data is required. If the center-

line function can be specified to infinity with boundary conditions

along ij> then it is possible to integrate without losing points at

either end of the axial coordinate. Also, specifying the center-

line function to infinity prevents the propogation of disturbances

from arbitrarily imposed boundary conditions, at a finite axial

location. Two features appear desirable for the stretching function.

First there should be appropriate spacing of points to allow maximum

accuracy at all axial locations. This requires the grouping of

points at the throat while minimizing the points where the dependent

variables .are varying little, such as the chamber. Second, the

stretching function should facilitate the numerical computation by
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putting the physical coordinate z into a finite region.

These objectives were accomplished by specifying a stretched

coordinate £ which was functionally similar to the centerline

velocity function. Figure 2 presents the relationship of W and

5 with z.

5 = 1 + Tanh[a(z-zt>]

5' = a sech2[a(z-zt)] = a 5(2-5) (32)

z - log(5/2 - 5)/2a + zt

It is readily observed that,

z = -oo ; 5 D 0

z = zt ; 5 • 1 (33)

z = +» ; 5 = 2

Initially some useful results were obtained assuming B = C.

Figure 3 presents the results for y = 1.40, R /R = 0.40, and

e = 4.0. To obtain these results, the coefficients of equation

(37) were assigned as follows: - .

A = 1'~ "-841
B '- C = .975 . (34)

zt = 5.0

Each streamline can represent a nozzle wall for inviscid flow.

Increasing the stream function results in smaller R /R nozzle
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throats, and it causes the lines of constant Mach number to

converge to a point near the minimum radius of the nozzle. Also

the axial location for the minimum radius of a streamline tends

to.move upstream, while the nozzle inlet angle becomes more severe

as the stream function increases.

Figure 4 presents the wall (* = 100%) and centerline .(̂  = 0)

pressures and Mach numbers as a function of axial position. The

wall pressure exhibits two interesting details for this case.

First, there is a relative maximum near the juncture of the convergent

and cylindrical portions of the nozzle. This region has been

troublesome in the past in that the boundary layer often separates

20due to the adverse pressure gradient . This adverse pressure

gradient becomes more severe with increasing 8 . The value of the

static pressure becomes close to the stagnation pressure indicating

a virtual stagnation of the forward flow in some cases. Second,

after the throat, there occurs another relative maximum. This

phenomenon has been noticed in connection with conical nozzles

where the exit cone joins the throat curvature. In Figure 3, the

contour generated is analytic, therefore, the pressure rise must

be associated with the compression experienced when the gases

leave the throat curvature and are partially stagnated as they

leave the circular arc and are forced into a more parallel flow.

The Mach curve reflects the pressure fluctuations, in addition, it

points to the large difference between the centerline and the wall

Mach numbers. The one-dimensional value of Mach number, based on the

¥ = 100% contour is presented as a reference. Note that this
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value remains bounded by the wall and centerline value.

Figure 5 repeats the general pattern of Figure 3 except

e =9.0. For this case,c

A = 0.930

B = C =» 0.760

zt = 5'°

This centerline velocity function yields a nozzle in which,
\

R /R = 0.875, and 9 = 50°.c t w

For a given e and R /R , the nozzle inlet, 6 , may bec c t w

tailored by varying the ratio of B/C in equation 27. To retain

the same contraction ratio and radius of curvature ratio , A as

well as (B -I- C) must be held constant. Figure 6 presents three

cases illustrating the effect of varying B/C from 1.0 to .1.5 and

2.0. The coefficients for the velocity function are:

A = .931 e = 9.0c

B + C =1.40 R /R = 1.15c t

z =6.0 .-

For Figure 5a the ratio B/C = 1.0 which results in a nozzle of

9 = 55°. When B/C = Ii50, the nozzle inlet angle reduced to

6w = 42°. When B/C =2.0, the nozzle inlet angle was GW = 32°.

Thus, once a particular nozzle is identified for e and R /R the' c c t

inlet angle can be varied as desired by varying B/C.

After many runs were made, It was possible to arrive at a
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generalized plot of R /R with respect to the coefficients of the

centerline velocity function. Since there exists an infinity of

nozzles corresponding to each particular velocity function

depending on the streamline the results presented in Figure 7

reflect the value of the stream function as well. With this plot

it is possible to choose the correct value of A(B + C) to yield the

appropriate throat radius of curvature. It should be noted that this

plot is approximate since the throat contours are only approximately

circular.

Figure 8 presents the discharge coefficients with respect to

R /R for some of the nozzles generated during the course of this

study. It should be noted that the radius of curvature is not

strictly defined for these studies, therefore, the best fit over an

arc near the throat was used. The results of Kliegle and Levine's

approximate theory based on a expansion about 1/(1 + R /R ) are

presented for reference .

The value of C was calculated for the present case by

determining the minimum wall radius (streamline radius). In

general the two-dimensional solution yields a radius greater than

the predicted one-dimensional value for the same mass flow.

Therefore,

CD ' (Rt l-D/Rt 2- . <35>

The resultant C_ as a function of R /R was found to beD c t

essentially independent of 6 . To prove this point several runs
W

were mqde .in which R /R was held constant however 6r, was variedc t • - W

from 55° to 32° (Figure 6). Within the accuracy of assigning a
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valve to R /R to the throat streamline contour, no variation in
- c t

C was detected. Recently Back et al have gathered experimental

data over a range R /R and 9 . They concluded that except for R /R
C t Vf " L» t.

19in the order of 0.25 and less, the 9 dependence to be very small .w

Figures 9 and 10 present the results of a nozzle generated for

Y = 1.20. This specific heat ratio is more similar to rocket flows.

The results are for a case where,

1.20 Y = 1.40

A - 0.843 R /R_ - 0.54 R /R_ = 0.40c t c t

B - 0.975 ' e - 4.0 e 4.0c • c

z •- 5.00 9 . - 47° 6 = 46°t w w

Thus, it is seen that reducing y tends to decrease the R /R

while retaining the same values of 9 and e .w e

Figures 11 and 12 present a nozzle which is compariable to

21one employed by Cuffel et al . In this case some attempt was

made to match the experimental nozzle wall, within the limit imposed

by equation 27. Figure 11 illustrates the match obtained employing

the standard centerline velocity function containing three arbitrary

coefficients. From the transonic region upstream the match is very

close. Also plotted are a few of the resultant lines of constant

Mach number compared to experimental values. It can be seen that the

experimental result show slightly greater curvature of the constant

Mach lines. Figure 12 presents the centerline and wall Mach number

in the region of the throat. The experimental results, again, show a

more drastic variation at the throat.
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The differences between experimental and analytical results

may be attributable to a number of factors. First, the contour

generated is smooth and analytic throughout, while the

experimental nozzle consists of straight lines and circular a-rcs.

Second, there can be some round off or numerical smoothing found

in any numerical difference method.

. In this regard, no artificial or numerical viscosity was

employed in there calculations, however the method is an implicit

one which requires approximately three iterations per stream

wise step. In view of the results compared to experimental ones

a higher order difference scheme may be desirable especially when

coupled with double precision operations. Third, there is the

problem of accurate measurements in the transonic range. The

quoted accuracy of the experiments was +0.2 psi based on a total

pressure of 70 psi. In the throat region this causes the Mach

number to be + .02. It was interesting to note, however, that the .

discharge coefficient, C , for the experimental and analytical

case agreed quite well. (See Figure 8).-
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STABILITY AND CONVERGENCE

During the course of this investigation there were many

opportunities .to test the convergence and stability of the present

method. Some of the negative results obtained along the way to a

successful technique should be of practical interest to other

workers in the field. When the problem was first formulated, no

>̂axial stretching was attempted. Although some results were

obtained, it was impossible to progress far into the * direction

before serious stabilities due to the lack of local convergence

developed, even though an implicit method was employed.

The Instability was nucleated at the point where the

cylindrical section began to blend into the convergence portion of

the nozzle. Characteristically, the velocity in the region is

decreasing due to a locally adverse pressure gradient. This

.instability quickly spread upstream towards the initial conditions.

Downstream of this point, no computing difficulties were

encountered and smooth nozzle profiles were always obtained at

the throat.' *
22To circumvent these problems, the method of Lax-Wendroff

was employed. Now the essential function of the Lax-Wendroff

method is to introduce an artificial, numerical viscosity (or

diffusion coefficient, or heat transfer coefficient). In so

doing, the form of. the governing equations are changed from

elliptic to hyperbolic. Naturally, the stability of the" new

hyperbolic problem initiated from cauchy conditions has been
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found to be stable. Consider the following equation:

Wv + f x = 0 (36)

The finite difference analog for central differences is,

-f±_itj> 07)

.Employing the Lax-Wendroff method, the finite difference equation

is written:

±_lt^ . o (38)

Recasting the 'above expression yields,

. -wij + wi-i.j>- ("39)

Therefore, a subtle change in the form of the difference

equations produces a drastic change in the equation to be solved

where,

D - Ax2/2M , (41)
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The magnitude of the artificial viscosity introduced is a-

strong function of the step sizes taken. Figure 12 presents the

result of one calculation using this approach which led to a

vastly improved stability. Further, the results were smooth and

depended continuously on the initial conditions. Unfortunately

the results were grossly in error, showing a spreading of Mach

lines from the centerline to the wall, instead of converging at

the throat.

At this point in the study, coordinate stretching was

initiated. It was desired to place a large number of points in

the transonic region while reducing the number of-points in the

low subsonic region. This permitted taking derivatives over

physically large spaces where the velocity was not changing

rapidly, while taking derivatives over small regions in the

transonic region. Recall the stretching function given previously

£= 1 + tanh (a(z-zt)) (32)

This stretching function works well for nozzle flow patterns,

however, others may be employed for different centerline velocity

functions. Increasing the coefficient, _a, results in grouping

points at z = z . It is possible to take equal increments of £

from 0. to 2.0 while providing optimum spacing of points in the

physical plane, this technique permitted the removal of all

artificial methods of convergence. Further it was possible to

proceed well past the ̂  = 100% condition. Two limits to the stability

were noted. First, the coefficient a_ should be choosen in relation

to the centerline velocity function. In other words, the more severe
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the gradients In W . the greater £ should be. Second, when the

nozzle inlet angle goes beyond 65 , it is difficult to obtain

convergence because the axial velocity is no longer the dominant

variable in determining the mass flow rate. This means that the

centerline axial velocity bears little influence on the results in

this region.
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CONCLUSIONS

The inverse method provides a powerful tool for the design

of nozzles by calculating the flow field by one uniform approach

from the surface of mass generation to the nozzle exit. The

technique is not new, and has been applied to a variety of pro-

blems. In fact all of the approximate solutions for the transonic

2—8
range apply this concept. For inviscid flow no approximation

in the governing equations need be made even for rotational flows.

Therefore, within the accuracy of the numerical technique the

solution is exact. Unfortunately, it is not possible to match a

given nozzle wall contour completely with any finite term center-

line velocity profile. However, since the shape of the subsonic •

portion is somewhat arbitrarily specified at the.present time,

this need be no real fault. A relatively simple centerline velo-

city function has been shown adequate to obtain any reasonable

combination of e , 8 , R /Rk.c w - c t • . •

Solutions obtainable by this technique can be employed to

yield a free stream condition for studies of such effects as

separation, transition, and laminarization. In addition, in-

teresting two-dimensional geometrical effects such as the influence

of 6 , R /R., and E on C_ and the M = 1 condition can bew c t c D

investigated.

The success of the present method is.largely due to the use

of appropriate stretching functions for the axial coordinate so
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that the grid spacing can be adjusted for optimum spacing. As

one would suspect the lowest subsonic region causes the most

difficulties. This is because in the finite difference sense,

to advance' in <J> requires more points of the centerline velocity

to adequately describe the subsonic point. Coarse grid spacing in

this region assures that the influence of Wc(z) over a large section

is brought to bear on the low. Mach number points. Concentrating

the grid in the transonic region permits only relatively local

effects to dominate and allows greater accuracy where velocity

gradients .are highest.

A final word concerning the inverse technique applied to

mixed flows (subsonic, transonic and supersonic) seems appropri-

ate. It may be of some concern that the centerline velocity .

function is specified every where apriori. This means that the

supersonic flow can indeed influence the subsonic flow. If this

is troublesome, recall that the streamline contour is not fixed

apriori but is calculated iteratively. In other words, it is

not surprising that a movement of the streamline contour should

effect both the subsonic and supersonic flow..
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NOMENCLATURE

A, B, C «= constants in centerllne velocity function

n = nozzle discharge coefficient

c = specific heat at constant pressure

f = orbitrary function

H = enthalpy

M = Mach number

P =» pressure

q = velocity vector

r, 6, z = cylindrical coordinates

R =,gas constant

R = throat radius of curvaturec

R ** throat radius

S = entropy . .

T = temperature

u, v, w = radial, tangential, and axial velocities

Y = specific heat ratio

A = finite difference

e = contraction or expansion ratio

? = transformed axial coordinate

6 = nozzle wall inlet angle

v = iteration number

ff • 3.14159...

p = density
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ij» = stream function

Subscripts

c = throat curvature radius, contraction

cl = centerline

inf = infinity

0 = stagnation conditions

t = throat valve

1-D = one dimensional

1 = axial grid point designation

n = streamline grid point designation

Superscripts

- nondimensional value

1 derivative with 'respect to z



43

REFERENCES

1. Guderly, K. G., The Theory of Transonic Flow, Addison-Wesley
Publishing Company, Inc.., Reading, Mass., 1962, p. 68.

2. Oswatitsck, K. and Rothstein, W., "Flow Pattern in a Con-
verging-Diverging Nozzle," NACA Lewis Research Center, TM
1215, 1949.

3. Sauer, R., "General Characteristics of the Flow Through Nozzles
at Near Critical Speeds," NACA Lewis Research Center, TM 1147,
1947;

4. Hall, I. M., "Transonic Flow in Two-Dimensional and Axially-
Symmetric Nozzles," Quarterly Journal of Mechanics and Applied
Mathematics XV, 487-508, 1962.

5. Kliegel, J. D., and Levine, J. N., "Transonic Flow in Small
Throat Radius of Curvature Nozzles," AIAA Journal, Vol. 7,
No. 7, July 1969, pp. 1375-1378.

6. Levine, J. N., Coar, D. E., "Transonic Flow in a Converging-
Diverging Nozzle," NASA-CR-111104, Sept. 1970.

7. Hopkins, D. F. and Hill, D. E., "Effect of Small Radius of
Curvature on Transonic Flow in Axisymmetric Nozzles," AIAA
Journal 4, 8, 1337-1343, (Aug. 1966).

8. Friedricks, K. 0., "Theoretical Studies on the Flow Through
Nozzles and Related Problems," Applied Mathematics Group, New
York University, Report 82.1R, AMG-NYU 43 (1944).

9. Morris, P. M. and Feshback, H., Methods of Theoretical Physics,
McGraw-Hill Book Company., New York, 1953, Vol. 1, p. 706.

10. Crocco, L., "A Suggestion for the Numerical Solution of the
Steady Navier-Stokes Equations," AIAA Journal, Vol. 3, No. 10,
Oct. 1965, pp. 1824-1832.

11. Migdal, D., Klein, K., and Moretti, G., ."Time-Dependent Calcula-
tions for Transonic Nozzle Flow," AIAA Journal, _7, 2, pp. 372-373,
Feb. 1969.

12. Prozan, R. J., Work referred to in reference 21.

13. Pirumov, U. G., "Calculation of the Flow in a Laval Nozzle,"
Soviet Physics-Doklady, Vol. 12, No. 9, pp. 857-860, March 1968.

14. Courant, R. and Hilbert, D., Methods ̂ f Mathematical Physics,
Vol. II,. Interscience Publishers,.New York, 1962.



44

15. Hardamard, J., Lectures on Cauchy's Problem in Partial Differential
Equations, Dover Publications, New York, 1952.

16. Back, L. H., Massier, P. F., and Cuffel, R. F., "Some Observations
.on Reduction of Turbulent Boundary-Layer Heat Transfer in Nozzles.
AIAA Journal. Vol. 4, No. 12, Dec. 1966, pp. 2226-2229.

17. Back, L. H., Massier, P. F., Cuffel, R. F., "Flow and Heat Transfer
Measurements in a Subsonic Air Flow Through a Contraction Section,"
International Journal of Heat and Mass Transfer, Vol. 12, Jan. 1969, .
pp. 1-13.

18. Frank, L. S., "Difference Methods for Solving the Improper Cauchy
Problem Simulating Flow of a Perfect Gas Through a Nozzle," Soviet
Physics-Doklady, Vol. 13, No. 9, March 1969.

19. Back, L. H., Cuffel, R. F., "Flow Coefficients for Supersonic
Nozzles with Comparatively Small Radius of Curvature Throat,"
AIAA Journal. Vol. 8, No. 2, Feb. 1970, pp. 196-198.

20. Back, L. H., Massier, P. F., and Cuffel, R. F., "Effect of Inlet
Boundary-Layer Thickness and Structure on Heat Transfer in a Super-
sonic Nozzle," AIAA Journal, Vol. 5, No. 1, pp. 121-123, Jan. 1968.

21. Cuffel, R. F., Baek, L. H., and Massier, P. F., "Transonic Flowfield
in a Supersonic Nozzle with Small Throat Radius of Curvature," AIAA
-Journal, Vol. 7, No. 7, pp. 1364-1366, July 1969.

22. Lax, P. D., and Wendroff, "Difference Schemes of Hyperbolic Equations
with High Order Accuracy," Comm. Pure and Applied Math, Vol. 17, 1964,
pp. 381-398.




